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Abstract: Self-assessment, in the education framework, is a methodology that motivates students to
play an active role in reviewing their performance. It is defined as “the evaluation or judgment of
‘the worth’ of one’s performance and the identification of one’s strengths and weaknesses with a view
to improving one’s learning outcomes”. The goal of this research is to study the relationship between
self-assessment and the development and improvement of problem-solving skills in Mathematics.
In particular, the investigation focuses on how accurate the students’ self-evaluations are when
compared to external ones, and if (and how) the accuracy in self-assessment changed among the
various processes involved in the problem-solving activity. Participants are grade 11 students (in
all 182 participants) in school year 2020/2021 who were asked to solve 8 real-world mathematical
problems using an Advanced Computing Environment (ACE). Each problem was assessed by a
tutor and self-assessed by students themselves, according to a shared rubric with five indicators:
Comprehension of the problematic situation, identification of the solving strategy, development
of the solving process, argumentation of the chosen strategy, and appropriate and effective use of
the ACE. Through a quantitative analysis, students’ self-assessment and tutors” assessment were
compared; data were cross-checked with students” answers to a questionnaire. The results show
a general correlation between tutor assessment and self-assessment, with a tendency of students
to underestimate their performance. Moreover, students were more precise in self-assessing in the
indicators: Development of the solving process and use of the ACE, while they had major difficulties
in self-assessment for the indicators: Comprehension of the problematic situation and argumentation.

Keywords: advanced computing environment; digital learning environment; mathematics; problem
solving; self-assessment

1. Introduction

As defined by Klenowski in 1995 [1], self-assessment is “The evaluation or judgment
of ‘the worth” of one’s performance and the identification of one’s strengths and weak-
nesses with a view to improving one’s learning outcomes”. It is a valuable approach to
support learning since students are involved in playing an active role in reviewing their
performances [2,3]. By doing so, they look back to how much they have achieved, and
they can set higher goals to improve their abilities [4,5]. It is therefore an efficient way for
effective and permanent learning [6]. Some studies have highlighted how self-assessment
can be effective for promoting problem-solving competences in Mathematics [7-11]. In fact,
problem-solving deeply requires meta-cognitive skills [8,9], and reflection on one’s work
has been pointed out as one of the promotional approaches to teach problem solving [10,11].
Metacognition and reflection are at the core of self-assessment processes [2].

This research arises from the desire for studying the relationship between self-assessment
and the development of problem-solving skills in Mathematics, and for finding out if
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there is a relationship between the improvement of problem-solving skills and the self-
assessment accuracy. The special focus of this research is investigating which processes
of problem solving pose more difficulties to students in self-assessing their work. In the
literature, there are many studies which suggest using self-assessment as a strategy to
improve problem-solving skills. However, the relation between the two seems to be under-
investigated. Moreover, the students” accuracy and difficulties in self-assessment in the
different processes involved in problem solving are not much explored. This study is an
explorative study which attempts to find some preliminary results through quantitative
analyses, compared, when needed, with qualitative data.

The study has been carried out within the Digital Math Training (DMT) project [12]
funded by the Fondazione CRT within the Diderot Project and organized by the Univer-
sity of Turin (Italy). The first edition of this project took place during the academic year
2014/2015, while the eighth edition is ongoing in 2021/2022. Every year, the DMT project
engages about 3000 upper secondary school students of Piemonte and Valle d’Aosta (Italy).
The aim of the project is developing mathematical and computer science competences
through the resolution of real-world mathematical problems using an Advanced Comput-
ing Environment (ACE) [13]. The core of the project is the “online training”, where selected
students are challenged with non-standard problems in a Digital Learning Environment
(DLE). The DLE is designed to host several activities, including collaborative assessment
and self-assessment activities, aimed at improving the participants’ problem-solving skills
through technologies. Students are asked to submit the solution to 8 problems during the
online training, and for each problem they receive an external assessment by trained tutors.
Moreover, they have the chance to self-assess their solution before knowing the tutors’
evaluation. Assessment and self-assessment are performed through a shared rubric which
includes five indicators, corresponding to the problem-solving processes: Comprehension
of the problematic situation, identification of the solving strategy, development of the
solving process, argumentation of the chosen strategy, and appropriate and effective use
of the ACE. At the end of the online training, the data about the tutors” assessment and
the students’ self-assessment of the 8 problems were collected, with the aim of comparing
them and investigating a possible relationship. The aim is understanding how accurate
are the students’ self-evaluations when compared to the tutors’ ones, and if (and how)
the accuracy in self-assessment changed among the various indicators. Thus, the research
questions that guided this study are the following;:

e RQI: Is there a relation between external (tutors’) assessment and students’ self-
assessment?

e RQ2: In which problem-solving phase did students show more difficulties in self-
assessing their work?

This paper is structured as follows. In Section 2 (Theoretical framework), the main
issues of this study, which are self-assessment, doing, and assessing problem solving with
the technologies, are discussed. In Section 3 (Materials and methods), the development
of self-assessment within the DMT project is presented and the quantitative methods of
analysis are outlined. Section 4 (Results) displays the results obtained through the analyses,
in Section 5 (Discussion), the results are discussed in light of the theoretical framework,
and in Section 6 (Conclusions), perspectives for research and education are drawn.

2. Theoretical Framework
2.1. Self-Assessment

During the last two decades, there has been a growing body of interest about self-
assessment in the educational environment, especially because of evidence that it enhances
student acquisition of some academic and social skills [1-5,14]. In addition, several studies
revealed that self-assessment is a sine qua non for effective learning [2,6,15]. It is a valuable
approach to support learning, when used with educational value [6]. Self-assessment
is mainly referenced as a particular kind of formative assessment [2,5,16]; Black and
Wiliam [17], in their well-known theory of formative assessment, include self-assessment
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in the fifth key strategy of formative assessment, which refers to giving students an active
role and supporting their self-control of their learning processes. Besides self-assessment,
there are a number of other forms of assessment which can contribute to activate a student-
centered paradigm in learning. These forms of assessment can be enacted through a
variety of activities such as: Master classes, problem solving, gamification activities, or lab
sessions [18]. Varying the range of activities within a course can help collect and return
meaningful information about learning achievements, so that grades can acquire a deeper
sense [18].

Self-assessment involves students themselves as agent of the evaluation process; thus,
self-assessment is opposed, or complementary, to the “external” assessment, where the
assessment action is performed by a teacher or a tutor, an objective agent, and to peer
assessment, where the agents are peers [17,19].

Self-assessment is particularly relevant to the development of students’ capacity to
learn how to learn and to learn autonomously [17]. In this sense, self-assessment is related
to self-regulated learning [20]. According to Zimmerman, self-regulated learning is “self-
generated thoughts, feelings, and actions that are planned and cyclically adapted to the
attainment of personal goals” [21]. Self-assessment involves monitoring and reflection on
one’s work, which are metacognitive processes typical of self-regulated learning [20]. In
particular, self-assessment is rooted on three main processes that self-regulating students
use to observe and monitor their behavior [3,22]. Firstly, students produce self-observations,
deliberately focusing on specific aspects of their performance which are related to their
subjective standards of success. Secondly, students make self-judgments in order to deter-
mine how well their general and specific goals were met. Thirdly, they make self-reactions:
students study the rate of goal achievement which shows how satisfied they are by the
result of their job. By doing so, students” attention focuses on particular aspects of their
performance, and they redefine their standards and fix all previous ones. Self-assessment
contributes to self-efficacy and to students’ comprehension, whose main goal is learning
and not only performing well [3,22].

These metacognitive processes are also useful in problem-solving, especially in non-
routine problems where the solving strategy is not evident and students need to choose a
method, change strategy when it does not work, monitor the solving process, check and
interpret the results [8,9,11,23]. In Schoenfeld’s framework [24], “control” (which refers
to the metacognitive processes mentioned above) is one category of necessary behaviors
to successfully solve problems. Self-assessment has been using as an alternative form of
assessment to improve problem-solving competences of students in Singapore [25]. Other
studies point out that self-assessment skills are positively influenced by performance in
mathematical problem solving [26]. Thus, self-assessment and problem solving seem to be
strictly and mutually connected.

Certainly, self-assessment is a complex process. Bloom's revised taxonomy places
evaluation at one of the top positions of the hierarchy of cognitive processes [27]. Despite
the validity of self-assessment being debated, Ross [3], through an analysis of the literature,
points out that students’ self-evaluations can be reliable especially at secondary school
level (age 11-17) and when they have been trained on it, while they seem to be less reliable
with young children. In the literature, there are tips concerning how to use self-assessment
efficiently and in a beneficial way. From the literature, we collected a set of key points to
prepare students to use self-assessment in order to develop self-regulation.

First, the criteria used to assess the students’ work should be defined and shared. It
is very important to use an intelligible language for students and to address competences
that are familiar to them [2,5,28].

The next step should be teaching students how to apply the criteria, such as, for exam-
ple, showing them the application model, which increases the credibility of the assessment
and student understanding of the rubric. Showing examples of good performance should
be helpful to illustrate required standards and in which way they can be satisfied. It is also
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important for the students to be able to compare their performances with a good one, so
that they can understand how to improve their solutions [3,17].

In addition, giving students feedback on their performances should help them under-
stand the level achieved according to the required standard. Feedback should be focused
not only on strengths and weaknesses, but also on offering corrective advice, which leads
students to higher order learning goals. In the research literature there are studies about
this issue which compare self-assessment with and without feedback: Outcomes suggest
that self-regulation with feedback helps students recognize mistakes and correct them
because it directs them to a higher level of awareness and comprehension of failures [5,14].

In conclusion, students need assistance in using self-assessment data in order to
improve their performance [28]. Students’ sophistication in processing data improves with
aging [3]. However, they should be directed towards the self-assessment importance, which
supports growth and establishes goals for better learning and skills [3,28].

Moreover, it has been proved that self-assessment not only increases academic achieve-
ment, but also contributes to helping students in recognizing the necessary skills to every-
day and working life, thanks to the approach which focuses on identifying standards and
goals and on establishing the actions to be carried out in order to reach them [15].

2.2. Doing and Assessing Problem Solving with Technologies

The term “problem solving” in Mathematics Education refers to “mathematical tasks
that have the potential to provide intellectual challenges for enhancing students’ mathe-
matical understanding and development” [29]. Problem solving is one of the objectives
of Mathematics learning and a key component of mathematical competence [30]. Mathe-
matical problems should be central in mathematics teaching, to develop understanding
and foster students’ learning [9,23,31]. Problems acquire meaningfulness when they are
connected to the student’s daily experience [9,24]. A real-life situation familiar to students
can be used as a context to connect school Mathematics and personal experiences [32].
According to Samo, Bana, and Kartasasmita [33], contextual teaching and learning involves
connecting school activities with the external world of which students have experience
in their everyday life, and this should help transfer knowledge acquired at school in the
real situations they can face in working, social, and personal settings. In this way, problem
solving can favor interest and motivation towards Mathematics, generating realistic consid-
erations and developing modeling skills [34]. Moreover, through problem-solving activities,
students can develop ways of thinking, persistence, curiosity, and confidence in unfamiliar
situations that will turn out to be useful for their life [29]. To master problem solving,
students should be exposed to various types of problems regularly over a prolonged period.
The use of non-routine problems and open problems can help students develop creativity,
flexibility, and adaptivity in the strategy choice [35,36].

In [31], Pélya lists four principles that should be followed when solving a mathematical
problem: Understanding a problem, devising a plan, carrying out the plan and looking back
on the work done. These four phases are still shared by most researchers as fundamental
during the problem-solving process [11,33,37—40]. They entail the ability of interpreting
mathematically a real-word situation, choosing a solving strategy, developing the solving
process, even changing strategy if needed, and reflecting on one’s work and results [33].

The use of technologies deeply affects the whole problem-solving practice. On the one
side, the nature of problems that can be proposed can change, since tasks can, for example,
entail computations hard to perform by hand, dynamic explorations, algorithmic solutions
to approximate results, and many other aspects depending on the technology used [41].
On the other side, the solving process itself can be enhanced by the capabilities of the
technology in use and the forms of representations that it allows [41]. Since mathematical
thinking and modelling deeply rely on the forms of representation used to express the
mathematical objects [41-43], the use of digital technologies can influence the way students
approach problems, the strategy choices, and even the results obtained [44—46].
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The most used technologies for problem solving in education are: Electronic spread-
sheets, graphic calculators such as Graphing Calculator 4.0 [47], online computational
engines such as Wolfram Alpha [48], dynamic geometry systems such as Geogebra or Cabri
Geometry [49], Computer Algebra Systems [50], Advanced Computing Environments
such as Maple or Mathematica [13], but also Digital Learning Environments (DLE) [51] or
Automatic Assessment Systems [52,53]. These, and many other, technologies can foster
conjecturing, justifying, and generalizing by enabling fast, accurate computations, data
collection and analysis, and exploration of different registers of representation [54]. The in-
creasing availability and enhanced capabilities of electronic devices open new possibilities
for communicating and analyzing mathematical thinking [29]. Freed from the burden of
calculation, students can focus their attention on understanding the solving process and the
results, exploring, conjecturing, searching, and argumentation. Moreover, a DLE can foster
social interactions in problem solving through discussions in a community of practice; the
construction of shared meaning and knowledge are encouraged [55]. In a DLE, automatic
assessment systems can enhance problem-solving skills through interactive feedbacks and
reflection on one’s mistakes [56]. Very recently, there are growing experiences of innovative
technologies such as artificial intelligence [57], gamification [57], augmented or virtual real-
ity [58,59], automated questions generation [54], virtual laboratory and simulations [60,61],
enhancing DLEs for problem solving.

The assessment of problem solving is not a trivial issue. According to the current
literature, one of the best ways to evaluate students” performance in problem solving is
using rubrics, since they are constituted by a set of standard criteria and a limited scale
of quality levels through which a performance can be measured [62,63]. Rubrics can be
described as tables composed of a set of indicators, which refer to the assessment criteria,
and levels of performance (usually in a number between 3 and 5). The level of performance
for each indicator is described through descriptors, which guide the evaluator in establish-
ing the proper level [63]. The choice of appropriate indicators and the formulation of clear
descriptors is fundamental to make rubrics usable and sharable tools for assessment. The
indicators should refer to the various traits of the problem-solving process and competence.
The rubrics’ power derives from the fact that the same rubric, if appropriately designed,
can be used for different problems on different topics, making their assessment comparable.
Moreover, it is also a simple tool to communicate students the assessment criteria, making
explicit the indicators on which their work is assessed and the rules to assign scores. They
are also powerful as a feedback tool, because the descriptors of the various levels explain
students how their performance was under the different points of views expressed through
the indicators [19,62,64].

In DLEs, there are tools to assess students’ problem-solving skills through rubrics,
which automatize the assignment of levels, the computation of the scores and the commu-
nication of the feedback to the students.

3. Materials and Methods
3.1. Self-Assessment within the Digital Math Training Project

DMT’s activities focus on using digital tools as an ACE and a DLE to solve real-life
mathematical problems [12]. An ACE is a computer platform which allows users to carry
out numerical and symbolic computations, to produce graphs in 2D or in 3D, to insert
interactive components which automatize computations and display graphs by using
charts, formulas, sliders, text areas, and results of various kinds. It is also possible to
compute procedures by using a basic programming language and write comments on the
worksheet itself [13]. Some solving examples are showed in Figures 1 and 2. For the DMT
project, we chose Maple ACE since, compared with other ACEs, it has more functions for
didactics and, in Italy, it is largely employed in didactic projects in secondary schools and
universities [13,65].
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Total infected people at the day n

Crot == (R+1)"
Ctot= (R+1)" (1.1.1)

r is the number ofinfected people in one day
plot(subs(R=15,Ctot), n=0_10)

4.x 108

3. x 106

2.x 10°

1. x 10°

04

In this plot R=15, so I am| considering the measles
Thanks to these data I can answer the first question

soh‘e(mbs(R =15,Ctor) =753 -109, n]
§.202500680 (1.1.2)
Assuming people are infected by measles in the same way in all the world, and there aren't preventive measures, it will take 8 days in order to the entire world

population is infected.
N.B.: I write 8 days because I don't consider the day 0 in which there is only the first person infected.

Figure 1. Example of a student’s solution to a problem of the online training within the DMT project.

In the DMT project, each class joins an initial meeting during which two tutors present
the project and introduce mathematical problem solving using the Maple ACE to the
students. In each class which joins the initial meeting, five of the most motivated students
are selected and enrolled in a Moodle platform. In the DLE, there are three courses dedicated
to the three school grades (10, 11, and 12); students can access the course corresponding to
their grade.

Every 10 days, from December to March, a new real-life mathematical problem is
published, and students are asked to solve it by using their mathematical skills which
they should have learned in class. The problems proposed by the online training are 8.
Within 10 days, students are asked to upload the files with their solutions on the DLE. The
solutions will be analyzed and assessed by tutors using the DLE. Meanwhile, synchronous
and asynchronous tools for tutoring and discussion are activated within the DLE:

e A weekly synchronous online tutoring in web-conference, conducted by a tutor and
focused on how to use the ACE to solve the problems;

e A discussion forum monitored by tutors in which students can interrelate with the
other participants and discuss their solving strategies;

e A questionnaire which guides students to the self-assessment of the submitted prob-
lems according to the parameters chosen for grading the problems [12].

Moreover, students earn scores when they complete the online activities such as by
submitting solution to problems, by posting pertinent questions in the forum, by answering
to a question in the forum, by joining tutoring activities and by filling the self-assessment
questionnaire [55]. These scores are called “Digital Math Coins” (DMC) and are taken
into account in the evaluation of a leaderboard, which allows students with top scores
to move towards an advanced training which lasts one month and leads students to join
the final race. At the end of the activities, the top-ranking students will be rewarded. We
point out that the project’s activities are not mandatory for students, and that they are
extra-curricular, so that each student could choose the amount of time to dedicate to the
project and which activities to engage with.
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Select one of these virus, in alternative select "other” and insert the value of}ED in the first text area.

In the second text area please insert the number of people who are exposed to the virus, vaccinated and not vaccinated.

In the slider please select the power of 10 which represents the maximum number of people you will see in the 3D plot (tip: choose values next
to the number in the second text area). If vou select a lower value, the number of people yvou will see in the plot will be the same as the people
who are exposed to the virus.

Click "Run" to see the results.
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In this plot vou see the R value on the x-axis, the percentage of the population who should be vaccinated in order to build immunity
on the y-axis. The red point is the value which should be reached according to the selected virus.
There is also a text area in which you find the percentage of the population who should be vaccinated.
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Figure 2. (a,b) show an example of interactive components that a student realized in order to solve a
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problem proposed by the online training within the DMT project.

The mathematical problems are always contextualized in real life and have a growing
difficulty according to the confidence in solving problems using the ACE developed by
students during the online training. All of them are aligned with the National Guidelines
set forth by the Italian Ministry of Education. They are non-routine problems open to
multiple approaches and conceived to be solved through an ACE. At the beginning of the
online training, participants are told that problems can allow for multiple solutions and that
original ones are appreciated. Each problem usually has 3 or 4 tasks: The first ones guide
students to exploring and mathematical modeling the purposed situation; meanwhile, the
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last one requires a generalization of the problematic situation by using plots or interactive
components. In Appendix A, the text of the first and the last problem of the online training
for grade 11 students are reported, in order to understand the growing level of difficulty.
Moreover, a brief description of the other 6 problems included in the online training for
11th grade is provided.

The problems’ solutions worked out by the students are assessed by tutors and self-
assessed by students according to the same rubric designed to evaluate the competences in
problem-solving while using an ACE. The rubric is an adaptation of the one proposed by
the Italian Ministry of Education to assess the national written exam in Mathematics at the
end of Scientific Lyceum, developed by experts in pedagogy and assessment. The rubric has
5 indicators, each of which can be graded with a level from 1 to 4. The first four indicators
have been drawn from Polya’s model and refer to the four phases of problem solving; they
are the same included in the ministerial rubric. The project’s adaptation mainly involves
the fifth indicator, and entails the use of the ACE, which we chose to separate from the other
indicators to have, and to return to students, precise information about how the ACE was
used to solve the problem. Since the objective of the project is developing problem solving
with technologies, it has been considered appropriate to evaluate the improvements also in
the use of the ACE in relation to the problem to solve. The five indicators are the following;:

e  Comprehension: Analyze the problematic situation, represent, and interpret the data
and then turn them into mathematical language;

e  Identification of a solving strategy: Employ solving strategies by modeling the problem
and by using the most suitable strategy;

o Development of the solving process: Solve the problematic situation consistently,
completely, and correctly by applying mathematical rules and by performing the
necessary calculations;

e Argumentation: Explain and comment on the chosen strategy, the key steps of the
building process and the consistency of the results;

o  Use of an ACE: Use the ACE commands appropriately and effectively in order to solve
the problem.

The whole rubric is shown in Appendix B. Before beginning using it as an evalua-
tion instrument in the DMT project in 2014, it underwent a validation process: 4 senior
researchers in Mathematics Education applied it to assess samples of students’ solutions
of problems and their evaluations were compared, showing reliable results. It has been
shared with students through the DLE in order to allow them to self-assess their solutions
consciously and consistently. It has been implemented in the Moodle “Assignment” activity
so that tutors can use it directly on the DLE when grading the participants” work.

Students use the same rubric to self-assess their work. In this case, it has been imple-
mented though a questionnaire; students have to answer 5 questions, listed below, one for
each indicator of the rubric, by choosing a level from 1 to 4. The questionnaire modality has
been chosen to facilitate participants in using the rubric. The students” answers indicate the
self-assessed level for each indicator. They are told to make reference to the shared rubric
table to choose the most suitable level. Moreover, an additional question asked for their
difficulties in solving the problem. The questions are the following:

e  To what level do you think you understood—and showed that you understood—the
problematic situation?

To what level do you think you identified and described the solution strategy?

To what level do you think you developed the chosen solving process?

To what level did you discuss your steps clearly and in detail?

To what level do you think you effectively used Maple?

Did you find some difficulties in solving this problem?

The questionnaires were implemented online through a “Questionnaire” activity.
Students were asked to fill in the questionnaire after submitting their solution but before
knowing the tutors’ assessment. The questionnaire visibility depends on time criteria so
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that students cannot fill it in after seeing their results. To encourage students to fill in the
self-assessment form, they were rewarded with 3 DMCs for each questionnaire.

Before publishing the first problem, at the beginning of the online training, students
can find a section called “Get ready for the training!” in which there is a sample problem.
The participants can download the file and try to solve the task, then they can self-assess
their work by filling in the self-assessment questionnaire. In this section, they can also
find a solution proposed by tutors. By doing so, they will not earn DMC, because these
activities are conceived to let students practice with the evaluation criteria and understand
what a good performance is.

In addition, to allow the students to engage with the required standards, some solu-
tions are published after each problem, when the time for submission has expired: One
proposed by tutors and the others selected among the best files created by participants. In
this way, the students could engage with several solving approaches.

All the problems submitted by participants are assessed through the rubric. The tutors
assigned, for each indicator, a level between 1 and 4, and a score as indicated in the rubric.
The total score for a problem ranged from 1 to 100 DMC. In order to ensure reliability of
scores, for the first problems, each solution was assessed by two tutors and they were asked
to discuss their grades and reach a common decision if they were different. The average
difference between the two tutor’s grades was computed; the assessment process shifted to
a single tutor for problem when the average differences were below 3% of the total score (it
happened at the second problem). The assessment is released with additional personalized
feedback elaborated by the tutor who evaluated the solution. This feedback explains the
level obtained in each indicator, but it also includes observations about both mistakes and
original strategies and tips on how to improve the solution. The students can therefore
have feedback about their mistakes and obtain constructive and personalized tips which
can be employed in the following problems.

At the end of the training, a questionnaire is submitted to all participants concerning
several aspects of the project, including the students” experiences in problem solving,
assessment, and self-assessment. It is mainly composed of 5-points Likert scale items and
open questions.

The activities of the online training are conceived to help students develop self-
assessment skills, according to the framework based on the literature and presented above.
In particular:

e To establish and share the evaluation criteria, an assessment rubric has been created
and shared through the DLE;

e  Toshow how to apply the established criteria and clarify what a good performance
is, the section “Get ready for the training!” has been designed; moreover, proposed
solutions to the problems are published after the submission deadline. To increment
the range of solving approaches, besides the tutors’ resolution, also some of the most
original participants” submissions are selected;

e  To provide feedback to students, the tutors” assessment is provided though the rubric,
which has explicit descriptors; moreover, detailed and personalized comments and
tips are released by tutors together with the evaluation;

e To encourage self-assessment, participants receive an explanation about the impor-
tance of filling the self-assessment questionnaire. Moreover, they are rewarded with
3 DMC for each questionnaire filled.

3.2. Participants

Since this is an exploratory study, to answer the research questions, we reduced the
sample to the 182 11th grade participants (16 years old) to the online training program in
the academic year 2020/2021. In this way, we could refer the results to particular problems
(problems are different from grade to grade). The 11th grade was selected because, with
respect to the other grades, students were more active both with the forum discussions and
with the problems’ submission. In fact, we registered a higher number of submissions and
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forum discussions in the 11th grade course than the in the other grades. We believe that
10th grade students were less active because they were in a smaller number than the other
grades. Moreover, 12th grade students had probably a heavier workload due to the fact
that they were towards the end of their school path, and it prevented them from dedicating
much effort in the DMT project. Participants are selected students from the classes which
joined the initial meeting; they enrolled to the online training on voluntary basis. Thus,
they are mainly medium-high achievers, with a strong background in Mathematics.

The tutors who assessed the students’ resolutions were third-year Bachelor’s or Mas-
ter’s students in Mathematics. In all, ten tutors participated to the study; they were aged
between 21 and 26. Before starting the project, they joined a 10-h training course on problem
solving with an ACE and assessment of problem-solving competence using rubrics. Four
out of the ten tutors had previous experience as tutors in the DMT project.

3.3. Research Method

At the end of the training, we collected the data about the tutors” assessment and the
students’ self-assessment for each problem. For the tutors’ assessment, we considered the
level assigned to each indicator (from 1 to 4) and for the self-assessment we considered the
level indicated by students to each indicator (from 1 to 4), so that data are comparable. We
did not consider the total score out of 100 earned by students in the problems. For each
problem, the sample was reduced to the only students who submitted the problem and
filled in the self-assessment questionnaire, taking into account that the project’s activities
were not mandatory. We checked the reliability of tutors” assessment and self-assessment
grades for the eight problems by computing the Cronbach Alphas. For each problem, we
created a table with the level assigned by tutors and that self-assigned for each student and
for each of the 5 indicators. We then carried out preliminary analyses.

Firstly, for each student, we calculated the differences between the level assigned
by tutors and the self-assigned one. The differences were calculated both in absolute
value, to see how far the 2 evaluations were in absolute terms, and by subtracting the self-
assessment from the tutor’s assessment, to investigate if students tended to overestimate or
underestimate their performance.

For each student, we computed the general level for each problem, computing the
mean of the tutors” grades in the 5 indicators, and the average value of the self-assessment
levels in the 5 indicators. Then, for each problem, we calculated the average values for all
the students of the levels assigned by tutors indicator by indicator, and then, the means of
the general levels and those of the differences.

In conclusion, for each problem, we plotted the obtained data to compare the average
level and the average difference in absolute value for each indicator with the general
average level and difference in absolute value. By doing so, we were able to analyze
the general trend of the development of the problem-solving skills and of the use of
self-assessment, but also study the trend of each indicator.

After these steps, we carried out an advanced analysis. In particular, we employed
correlation tests with the aim of checking whether a relationship between assessment
and self-assessment exists. We then calculated the Pearson correlation coefficient, which
expresses the intensity of a linear relation between the two variables considered. The
Pearson coefficient has been calculated between the average level assigned by tutors and
that self-assessed by students, firstly, for the general level and then, for each indicator for
each of the 8 problems.

Moreover, we selected some of the final questionnaire’s questions because of their
utility in the interest of this research. These selected questions were about the difficulties
that students founded by solving the problems and by trying to satisfy the standard
required by the 5 indicators which is contained in the assessment rubric:

“In solving the problems, how much did the following aspects hinder you?
Comprehension of the problematic situation; Identification of a solving strategy;
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Completion of the solving process; Argumentation; Generalization by using
interactive components; Use of Maple.”

For each item, they could select a value on a Likert scale from 1 to 5, in which 1 is “No
difficulties” and 5 is “Lot of difficulties”.

We then collected the answers with the aim of understanding if a relationship between
the reported difficulty and the accuracy of the self-assessment exists. By doing so, we
employed the Analysis of Variance (ANOVA). We selected and grouped students in accor-
dance with their answers. For each group, we calculated the mean on the 8 problems of the
absolute difference of the indicator which is linked to the question in the questionnaire. In
this way, we realized the ANOVA table with the respective statistics.

All the analyses were conducted by using the software Excel and the statistical software
SPSS (Statistical Package for Social Science).

4. Results

The Cronbach Alphas computed for the tutors” assessment and the self-assessment
of each problem were satisfactory (for the tutors’ assessment they were, respectively, for
problems 1 to 8: 0.88, 0.86, 0.95, 0.95, 0.96, 0.92, 0.99, 0.93; for the students’ self-assessment,
they were, respectively, for problem 1 to 8: 0.69, 0.74, 0.91, 0.92, 0.91, 0.89, 0.95, 0.90). Thus,
the assessment data considered are reliable.

The preliminary analyses revealed that students basically underestimated their per-
formances in all the indicators and in all the problems: The means of the non-absolute
differences between the tutors’ grades and self-assessment values are positive, as shown in
Table 1.

Table 1. This table contains the means of the non-absolute difference between the tutors’ assessment
and the self-assessment for each indicator for the 8 problems.

Number of Students Comprehension Identification = Development Argumentation Use of Maple

1st problem
2nd problem
3rd problem
4th problem
5th problem
6th problem
7th problem
8th problem

116
120
110
105
76
82
60
58

+0.48 +0.78 +0.65 +0.43 +0.83
+0.83 +0.64 +0.45 +0.45 +0.57
+0.66 +0.67 +0.54 +0.23 +0.60
+0.67 +0.56 +0.51 +0.60 +0.53
+0.53 +0.59 +0.49 +0.50 +0.68
+0.65 +0.38 +0.37 +0.39 +0.57
+0.57 +0.73 +0.58 +0.70 +0.60
+0.64 +0.38 +0.41 +0.52 +0.62

This is quite a surprising result, since other studies, such as [26,66,67], report the
students’ tendency to overestimate themselves in self-assessment. Table 2 also shows the
number of students who, for each problem, both submitted their solution receiving the
tutors’ assessment and submitted the self-assessment questionnaire. These are the numbers
of students on which we could compute the following statistics as well. One can notice
that the numbers decrease after the first half of the training: This is probably due to the
increasing in the problems’ difficulty and to the fact that the projects’ activities were not
mandatory and extra-curricular, so that participants could have difficulties in carrying
them out after the other school duties.

By analyzing the general average level reached by the students, according to the
Pearson coefficient it turns out that tutor’s assessment and self-assessment are significantly
correlated. In particular, the correlation starts to become stronger from the third problem:
After that, the Pearson coefficients are all values greater than 0.5, and the maximum is
achieved by the seventh problem (0.735, p-value < 0.001), as shown in Table 2. This can
indicate that the first two problems served as a training to self-assessment.

We will now analyze the obtained results for each indicator.
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Table 2. This table contains the Pearson coefficients and p-values which are calculated comparing the
tutors’” grades and the students’ self-assessment (average values over the 5 indicators).

Pearson Coefficient p-Value
1st problem 0.407 <0.001
2nd problem 0.259 0.004
3rd problem 0.731 <0.001
4th problem 0.535 <0.001
5th problem 0.556 <0.001
6th problem 0.615 <0.001
7th problem 0.735 <0.001
8th problem 0.515 <0.001

4.1. Comprehension of the Problematic Situation

In all the 8 problems, the tutor’s grades in the indicator “Comprehension of the
problematic situation” are, on average, greater than the general average of the tutors’
grades in the 5 indicators for those problems, as shown in Figure 3a. Here and in the
following graphs, the bar “Comprehension” stands for the average value of the tutors’
grades in this indicator for each of the 8 problems, while the bar “General” refers to the
general level obtained by students for those problems, computed with the mean of the
tutors’ grades in the 5 indicators. This means that, for students, it was one of the easiest
steps of the problem-solving process.

COMPREHENSION COMPREHENSION

comparing the avarage level comparing the absolute difference

4
3.9
3.8
3.7
3.6
3.5
34
3.3
3.2
3.1

3

1
0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

7th  8th

Problem 1st 2nd 3rd 4th 5th  6th 7th  8th Problem 1st 2nd 3rd 4th 5th  6th

= Comprehension = General m Comprehension = General

(a) (b)

Figure 3. (a) Trend of the average level of the indicator “Comprehension of the problematic situation”
by comparing that with the general trend, computed over the 5 indicators.; (b) trend of the average
absolute difference between tutors” and students” assessment in the indicator “Comprehension of the
problematic situation” by comparing that with the general trend of the absolute difference, computed
over the 5 indicators.

The trend of the average absolute difference between tutors” assessment and self-
assessment for this indicator is similar to that of the average one (computed over the
5 indicators), as shown in Figure 3b. In particular, it is lower than the general one, despite
of the 2nd, the 4th, and the 8th problem. It seems that, except for these problems, self-
assessment in this indicator is closer to tutors’ assessment than other indicators. This
appears also in the Pearson coefficients calculated when correlating the average level
assigned by tutor and that self-assigned for this indicator, as presented in Table 3. The
Pearson coefficients for the 2nd, the 4th, and the 8th problems are respectively: 0.074
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(p-value 0.422), 0.379 (p-value < 0.001), 0.228 (p-value 0.086). It turns out that the 2nd
and the 8th problems don’t show a significative correlation between assessment and self-
assessment for the indicator “Comprehension of the problematic situation”. To understand
the reason, a qualitative analysis on the data offered by the DLE was conducted.

Table 3. This table contains the Pearson coefficients and p-values calculated between the average level
assigned by tutors and the self-assigned ones for the indicator “Comprehension of the problematic
situation”.

Pearson Coefficient p-Value

1st problem 0.356 <0.001
2nd problem 0.074 0.422

3rd problem 0.652 <0.001
4th problem 0.379 <0.001
5th problem 0.404 <0.001
6th problem 0.483 <0.001
7th problem 0.662 <0.001
8th problem 0.228 0.086

In the 2nd problem, students found several interpretations of the text and discussed
them in the forum, without reaching a common solution. From their discussion in the
forum, it is possible to perceive their confusion, probably because they are used to tra-
ditional textbooks problems which have only one possible solving approach and correct
solution. By checking the question of self-assessment questionnaire involving the difficul-
ties faced in solving the problem, 38% of the students explicitly mentioned difficulties in
the interpretation of the text. In the following lines, some of the answers are listed:

“I found it difficult to select only one strategy because the text could be interpreted
differently”;

“The text wasn’t so clear”;

“I found it more difficult to understand the text than to use Maple. That is why I
tried to underline the points in the text from which the different interpretations
originated and then I employed my strategy. Furthermore, I found the forum
useful because other participants had my doubts and reading the answers to their
posts helped me.”

The issue of this problem presented a situation which could be interpretated in two
different ways. Tutors considered both of them valid, but students, after checking the
forum, probably thought that just one of the two was the correct one. This uncertainty
reflected in their self-assessment grades, which were different from the tutors’ evaluations.

Meanwhile, the 8th problem was very complex. The trouble in understanding how to
model the proposed mathematical situation could account for the lack of understanding.
In particular, on the discussion forum, students started five discussions about the first task
and one about the general interpretation of the problem.

Then the final questionnaire answers to the question “How much did the comprehen-
sion of the problematic situation hinder your problem-solving abilities?” was considered.
The students” answers to this question reflect their difficulties in carrying out this process
(1 means that they had low difficulties in comprehending the situation and 5 that they
had many difficulties). An ANOVA test was carried out, considering these answers as
independent variable and the mean of the absolute difference between the tutors” and
self-assessment grades in this indicator over the 8 problems as dependent variable. The
goal is understanding if higher difficulties in this process lead to higher discrepancies
between external assessment and self-assessment.

Table 4 show the means of the absolute differences between tutors” and self-assessment
grades for each selected answer.
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Table 4. This table contains the mean of the absolute difference between the tutors” and self-
assessment grades in this indicator over the 8 problems, computed for each value of Likert scale
selected by students to the question “How much did the comprehension of the problematic situation
hinder your problem-solving abilities?”.

Students’ Answers Mean Standard Deviation
1 0.4143 0.15278
2 0.7352 0.49100
3 0.8014 0.46268
4 0.8586 0.61427
5 0.8542 0.51875

From these results, it seems that the discrepancy between assessment and self-assessment
for the 8 problems in the comprehension of the problematic situation increases by increasing
the students’” declared difficulty in this process. However, this relation is not statistically
significant (p-value 0.448).

In conclusion, it seems that students found it relatively easy to understand the prob-
lematic situation and to self-assess in this indicator, except for the problems in which the
problematic situation was very complex or allowed different interpretations.

4.2. Identification of a Solving Strategy

The trend of the indicator Identification of a solving strategy is close to that of the
general level for all the 8 problems for both the average level (tutors’ evaluations) and
the average absolute difference between tutors’ and students’ assessment, as shown in
Figure 4a,b. So, it seems that self-assessing in this indicator was of medium difficulty.
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Figure 4. Graph which represents the trend of the indicator “Identification of a solving strategy” by
comparing that with the general trend, computed over the 5 indicators. (a) The trend of the average
level; (b) The trend of the average absolute difference between tutors’ and students’ assessment.

According to the analyses on the Pearson coefficient, it turns out that the correlation
between assessment and self-assessment in this process is particularly strong from the 3rd
problem, as shown from data in Table 5. The 2nd problem has the minimum value (0.200,
p-value 0.029), which probably reflects the students’ difficulties in the interpretation of the
text explained previously. Again, it seems that the first two problems acted as a gym for
self-assessment.
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Table 5. This table contains the Pearson coefficients and p-values calculated between the average
level assigned by tutors and that self-assigned for the indicator “Identification of a solving strategy”.

Pearson Coefficient p-Value
1st problem 0.243 0.009
2nd problem 0.200 0.029
3rd problem 0.639 <0.001
4th problem 0.411 <0.001
5th problem 0.509 <0.001
6th problem 0.468 <0.001
7th problem 0.653 <0.001
8th problem 0.421 0.001

By exploring the final questionnaire answers about the question “How much did the
identification of a strategy hinder your problem-solving abilities?”, it turns out that the
discrepancy between external assessment and self-assessment for the 8 problems in this
indicator increases by increasing the selected answer, as shown in Table 6. This relation is
statistically significant (p-value 0.016). This means that, the easier it was for students to
identify a solving strategy, the more accurate was their self-assessment of their work under
this perspective.

Table 6. This table contains the mean of the absolute difference between the tutors’” and self-
assessment grades in this indicator over the 8 problems, computed for each value of Likert scale
selected by students to the question “How much did the identification of a strategy hinder your
problem-solving abilities?”.

Students’ Answers Mean Standard Deviation
1 0.3452 0.13521
2 0.6847 0.44823
3 0.8374 0.42753
4 0.9793 0.31618
5 _ -

4.3. Development of the Solving Process

The average level (assigned by tutors) of the indicator “Development of the solving
process” has values between 3.3 and 3.6 out of 4 starting from the 2nd problem, as shown
in Figure 5a. Therefore, after the first problems, which were simpler than the following,
students were more challenged by the development of the solving process, and they set
their level. The 1st and the 7th problems show the highest average levels. The 7th problem
has also the highest correlation coefficient between self-assessment and assessment (0.740,
p-value < 0.001), as shown in Table 7. The high level in this indicator in the first problem
can be related to its simplicity with respect to the following one: It was rather similar to
other textbook problems that students could have experience of. The results in the 7th
problem could indicate how, after more than two months of online training, students could
have gained confidence with problem solving and self-assessment. Results decrease in the
last problem which, as pointed out before, was particularly complex to understand and this
could have undermined the students’ performance and self-assessment in all the indicators.
The absolute differences between tutors” and students” assessments in this indicator are
lower than the average values (computed over the 5 indicators), as shown in Figure 5b.
This means that students found self-assessment in this indicator relatively easy.

By considering the final questionnaire answers to the question “How much did the
development of the solving process hinder your problem-solving abilities?”, no significant
relation can be found between an increasing declared difficulty in this process and the
average absolute difference between assessment and self-assessment.
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Figure 5. Graph which represents the trend of the indicator “Development of the solving process” by
comparing that with the general trend, computed over the 5 indicators. (a) The trend of the average
level; (b) The trend of the average absolute difference between tutors” and students’ assessment.

Table 7. This table contains the Pearson coefficients and p-values which are calculated between the
average level assigned by tutor and that self-assigned for the indicator “Development of the solving
process”.

Pearson Coefficient p-Value

1st problem 0.300 0.001

2nd problem 0.277 0.002

3rd problem 0.632 <0.001
4th problem 0.460 <0.001
5th problem 0.518 <0.001
6th problem 0.553 <0.001
7th problem 0.740 <0.001
8th problem 0.465 <0.001

4.4. Arqumentation

The average level in the indicator “Argumentation” is generally lower than the general
level for the problems, as shown in Figure 6a. In the first problem, the gap is particularly
evident: We can argue that students are generally not used to commenting all the steps and
results in their daily school activities, so they were penalized in this indicator. The average
absolute difference between tutors” and students’ evaluations in this indicator is lower in
the first three problems and it grows on the next ones, as shown in Figure 6b. Interestingly,
in this indicator the students self-assessed more accurately in the first problems which are
mathematically easier and more similar to the traditional problems usually encountered in
class, while the difference increases when facing more complex and non-standard ones.

“Argumentation” is the indicator with the lowest correlation coefficients in the 8 prob-
lems, which are given in Table 8: The minimum value is in the 2nd problem, and it is 0.182
(p-value 0.046); the maximum is in the 7th problem, and it is 0.576 (p-value < 0.001). These
results could again reflect the difficulties in understanding the problematic situation for the
second problem and the familiarity with self-assessment developed toward the end of the
online training. It seems that self-assessing the argumentation process is not so easy for
students, especially in problems where they had difficulties in interpreting the text.
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Figure 6. Graph which represents the trend of the indicator “Argumentation” by comparing that
with the general trend, computed over the 5 indicators. (a) The trend of the average level; (b) The
trend of the average absolute difference between tutors” and students” assessment.

Table 8. This table contains the Pearson coefficients and p-values calculated between the average
level assigned by tutors and that self-assigned for the indicator “Argumentation”.

Pearson Coefficient p-Value
1st problem 0.269 0.004
2nd problem 0.182 0.046
3rd problem 0.525 <0.001
4th problem 0.488 <0.001
5th problem 0.307 0.007
6th problem 0.256 0.020
7th problem 0.576 <0.001
8th problem 0.346 0.008

By exploring the final questionnaire answers about the question “How much did the
argumentation hinder your problem-solving abilities?”, it turns out that there is a relation
between the increasing answer and the discrepancy between external and self-assessment,
as shown in Table 9. This relation is statistically significant (p-value 0.010).

Table 9. This table contains the mean of the absolute difference between the tutors’ and self-
assessment grades in this indicator over the 8 problems, computed for each value of Likert scale
selected by students in their answers to the question “How much did the argumentation hinder your
problem-solving abilities?”.

Students’ Answers Mean Standard Deviation
1 0.4571 0.37319
2 0.8515 0.49796
3 0.7836 0.47839
4 0.9877 0.50577
5 0.7143 0.62270

4.5. Use of the ACE

For the indicator “Use of the ACE”, the trend of the average level assigned by tutors
decreases during the first four problems and then increases, as shown in Figure 7a. For the
first four problems, the decrease can be explained with an increasing of required standards.
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In particular, the first two problems were generally more basic, and the programming of
interactive components was not required: the ACE was employed mainly for computations
and graphs. The first four problems were conceived to help students get acquainted with
the use of the ACE which was unknown for most of them before taking part in DMT project.
In particular, 50% of the students, in the self-assessment questionnaire, pointed out their
difficulties in programming the interactive components in the generalization of the 4th
problem. For example, some of them commented as follows by filling the self-assessment
questionnaire:

“I found it difficult to solve the third task. I had problems in programming the
interactive components”;

“I found it difficult to develop the interactive components by plotting the moving
average”;

“1 found it difficult to understand some tasks and so I did the best I could, even
though I'm not so sure I satisfied the requests”.

On the other hand, the last problems required an advanced use of the ACE, but this
was accompanied by an increasing of the students’ skills, who developed mastery in the
use of the ACE by solving problems and by joining the tutoring activities during the project,
so an increase in their level in this indicator can be appreciated.

The average absolute difference of the indicator “Use of the ACE” decreases onto the
last problem, as shown in Figure 7b. Thus, achieving competence in the use of the ACE
helped students improve self-assessment in this indicator.

“Use of the ACE” is the indicator with the highest Pearson coefficients, shown in
Table 10: the minimum is 0.322 (p-value < 0.001) in the 2nd problem, the maximum is 0.637
(p-value < 0.001) in the 7th one, reproposing the same trend seen in the previous indicators.

By checking the final questionnaire answers about the question “How much did
the use of the ACE hinder your problem-solving abilities?”, it turns out that there is no
relation between the increasing declared difficulty in this process and the average absolute
difference between assessment and self-assessment.
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Figure 7. Graph which represents the trend of the indicator “Use of the ACE” by comparing that
with the general trend, computed over the 5 indicators. (a) The trend of the average level; (b) The
trend of the average absolute difference between tutors’ and students’ assessment.
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Table 10. This table contains the Pearson coefficients and p-values calculated between the average
level assigned by tutors and that self-assigned for the indicator “Use of the ACE”.

Pearson Coefficient p-Value
1st problem 0.390 <0.001
2nd problem 0.322 <0.001
3rd problem 0.609 <0.001
4th problem 0.469 <0.001
5th problem 0.477 <0.001
6th problem 0.488 <0.001
7th problem 0.740 <0.001
8th problem 0.465 <0.001

5. Discussion

This research has been carried out within the DMT project and based on the following
research questions: (RQ1) Is there a relation between external (tutors’) assessment and
students’ self-assessment? (RQ2) In which problem-solving phase did students show more
difficulties in self-assessing their work?

The study has been conducted by cross-checking tutors” assessment and students’ self-
assessment to problem solving activities using an ACE. The assessments are given through
a rubric with 5 indicators, referred to the Polya’s framework of problem solving, adding the
use of technologies. They are the following: comprehension of the problematic situation,
identification of the solving strategy, development of the solving process, argumentation of
the chosen strategy, and appropriate and effective use of the ACE. The analyses have been
conducted both globally and indicator-by-indicator, in order to draw information about
how the trend in the students’ self-assessment change among the indicators. Students
were trained to self-assessment through a set of activities implemented in a DLE, following
literature-based tips and suggestions.

The analyses carried out allow us to positively answer the (RQ1): In fact, there is
a positive correlation between students’ self-assessment and tutors’ assessments. The
correlation coefficients calculated get stronger beginning with the 3rd problem. This
shows that the students self-assessed more and more properly and accurately as the online
training proceeded. This shows that the digital activities proposed within the online
training were effective to train participants to self-assess their work. The first two problems
were conceived as a gym to practice with problem solving with an ACE and with the
assessment process within the project, as well as with the self-assessment process. By
receiving feedback and self-judging their work, they become more and more confident with
the assessment criteria, improved their problem-solving competence and consequently
improved their self-assessment skills. This result is in line with other studies which show
that, when for upper-secondary students who received training in self-assessment, and
are generally medium-high achievers, the accuracy in self-assessment is high [3,7]. On the
other hand, the tendency to underestimate one’s performance that emerged in this study
does not find confirmation in the literature, where other studies, such as [26,66,67], report
the opposite tendency. This could be due to the high difficulty of the problems, which could
have led students not to overreach themselves by saying that they solved the problems
fully correctly. Moreover, through the forum discussions among participants, students
were exposed to different solving strategies and interpretations of the problems: they could
have raised doubts about their own resolutions, and this could have been reflected in their
self-assessment.

Moving on to the second research question, we can affirm that the indicators with
the lower correlation coefficients between external assessment and self-assessment are
“Comprehension of the problematic situation” and “Argumentation”, which refer to the
“comprehension” and “reflection” phases in Polya’s framework. So, it turns out that if
students found it difficult to understand the task, then they found it trickier to comment
and illustrate clearly and completely the steps they did, so that they were in trouble by
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self-assessing appropriately. This again is in line with the literature, where studies show
that performance positively influences self-assessment [25]. If for the comprehension
indicator results show that generally students found it easy to accomplish and self-assess
this step, except for particular problems, the argumentation seems to be a weak point in
all the problems, both for performance and self-assessment. These results are a mirror
of the usual teaching practices. On one side, it is still not common to find examples of
complex problems, open to multiple solutions, on Mathematics textbooks and teaching
materials [34,36], so students were confused when facing a problem which could admit
several interpretations, and generally had problems in interpreting the text of complex
problems and translating it into mathematical models. On the other side, often classroom
instruction does not pose enough attention to argumentation processes which go beyond a
series of calculations, or does not offer students an active role in explaining processes and
results [68]. Some strategies to improve the argumentation capacities of students can be
the production of examples as a starting point to build proofs [69], or the use of dynamic
explorations to gain a direct experience of the mathematical objects under study and to
support conjecturing [70].

The indicators which show the highest correlation coefficients are “Development of
the solving process and Use of the ACE”. By exploring the final questionnaire, it turns out
that, respectively, 92 and 91 students (out of a total of 120 filled questionnaire) answered
the questions about the difficulty for these two indicators by setting out a value between 1
and 3 in the Likert scale (in which 1 = “Any difficulties” and 3 = “Few difficulties”). This
reveals that most of the participants found it simple to develop the solving process and use
the ACE, so that they self-assessed more accurately in these indicators.

The results obtained in this study repeatedly highlighted that the students’ ability
to self-assess in the various indicators was stabilized after the first problems and grew
towards the end of the online training. The first problems served as a training to acquire
familiarity with self-assessment. On one side, this can be due to the low exposure of
students to self-assessment, and in general to different forms of assessment than the classic
external evaluation in the daily teaching practices [2]. On the other hand, it seems that
the design of the activities in the online training according to the suggestions found in the
literature (defining and sharing assessment criteria, teaching students how to apply the
criteria, giving feedback and encouraging self-assessment) [2,3,5,17,28] was effective to
train students to self-assess their performance.

It is interesting to note that at the end of the project performances in the indicator
“Argumentation” (according to the tutors’ judgments) are the lowest ones, meanwhile “Use
of the ACE” is the second indicator with the highest levels. It shows that the indicators
in which students self-assess more accurately, i.e., those having the strongest correlation
coefficients, are also those in which there are the higher scores at the end of the project.
Again, it shows the correlation between performance and accuracy in self-assessment [25].

6. Conclusions

Summarizing the results obtained in this study, a strong correlation between exter-
nal assessment and self-assessment of problem-solving activities was found, analyzing
results achieved by 11th grade students. Moreover, the highest discrepancies between self-
assessment and external assessment were found in the understanding and argumentation
processes of problem-solving activities, while in developing the solving strategy and using
the technologies, students were more accurate in self-assessment.

This study has several limitations, first of all, the limited numbers of participants
involved and their medium-high level of performance in Mathematics. These limitations
hinder the generalization of the results. However, it was an explorative study and the
restricted sample allowed to relate the obtained statistics to particular problem tasks and
search for confirmations in open answers and forum discussions. Since there are no other
studies which investigate self-assessment in the various processes of problem solving,
the results obtained here might be useful to other researchers in this field. It would be
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interesting to expand the research involving also grade 10 and 12 and seeing if results are
confirmed also when considering different problems. Moreover, this study mainly focuses
on the comparison between students’ and tutors” assessment. Future research could explore
this theme by investigating how students self-assess their work. It would be interesting to
enquire if students conduct retrospective assessments, i.e., if they rely on how they approach
the solving process and their efforts [3], or alternatively, if they found it more helpful to
engage with their peers or with the proposed activities [5]. Moreover, the frequency of
self-assessment could be added as a variable to this study, in order to investigate if it may
influence the quality of the performance and the accuracy of self-assessment itself.

The online training of the DMT project involves only selected students from several
schools in extracurricular activities, while, for the development of problem solving and
self-assessment skills of all the students, it is necessary to share these good practices with
the teachers, so they can be part of everyday teaching practices. To this purpose, all the
project’s problems are sent to the teachers of all the classes participating to the project, so
that they can use them with their whole classes for their lessons. Teachers usually find it
a precious support to propose different problems from those they can commonly find on
textbooks. Moreover, the project includes a teacher training course, in which teachers are
shown how to use the problems in their didactic activities and how to use the ACE to solve
the problems. It would be interesting to include also assessment and self-assessment issues
in the training course, so that teachers can learn how to use alternative ways of assessment
to improve problem-solving skills in their classes.
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Appendix A

Here the text of the first and last problem of the online training for 11th grade students
are reported. Moreover, a brief description of the other problems included in the online
training for 11th grade students is provided.

Problem 1—Gasoline
Marco’s car’s consumption is 5.4 L of gasoline per 100 km on average.
1.  How many km can he travel with a liter of gasoline?

Marco stops for gas and the gasoline price is EUR 1.348 per liter. He traveled 610 km
from the last full tank of gas.

2. How much will the full tank of gas cost this once?

After refueling, Marco goes to some relatives who live far from him. The distance
Marco has to travel is 1043 km.

He stops for gas twice.

The first time he spends EUR 18 and the gasoline price is EUR 1.291 per liter.

The second time he spends EUR 37 and the gasoline price is EUR 1.412 per liter.

He arrives with three quarters of a tank.
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3. How many liters does Marco’s tank contain, if the gasoline consumption remained
the same throughout the journey?

4. Assuming that the refueling stops were 305th km and at 940th km, plot the value
pointed by the tank indicator of Marco’s car in terms of the crossed km.

Problem 8—Antibiotic therapy

Returning from a trip, Marco doesn’t feel well. He decides to consult his doctor who
recommends a more thorough examination. These tests reveal the presence of 2 harmful
bacteria: There are 100 units of bacteria of type A, and 50 units of bacteria of type B. A
study established that both type of bacteria, which were considered independently, increase
5% per day. The study also showed how they are in competition which each other, i.e.,
one decreases proportionally to the concentration of the other, in addition to the natural
increase previously explained: they both decrease by 0.1% of the mathematical product
of the quantity per day. Fortunately, there is an antibiotic which reduces both bacterial
growths by 10 units per day.

1. If the therapy starts the first day after the medical prescription and is done properly,
how many days would it take to remove both bacteria from the organism? Discuss it
by using graphical representations.

2. Supposing that Marco begins to feel better when only one of the two bacteria has
disappeared, and he decides to stop the treatment. What happens to type A bacteria
in the 3 following weeks? Does it grow more or less than it would grow if the therapy
hadn’t started? Discuss it by using graphical representations.

3. Create a system of interactive components which estimates how many days it would
take to remove one of the 2 types of bacteria by inserting the initial concentration,
the natural increment of the 2 types of bacteria, the competitive decrease (assuming
they are the same), the antibiotic sensitivity (in term of the absolute decrease of
concentrations). Be careful: It isn’t required to display how many days it would take
to remove both bacteria.

The other problems

Problem 2 deals with bank interests and financial education. In particular, the problem
investigates what happens when the frequency of applying compound interest increases to
infinity. Students have to draw a formula for the compound interest, introduce a variable
for the frequency of applying interest, and understand what happens when the variable
goes to infinity.

Problem 3 deals with the optimization of the measures of boxes for deliveries. Students
are asked to find the optimal measures for the box sizes of a given volume giving some
logistic constraints. The problem asks also for a generalization of the resolution: students
have to create an interactive worksheet which, giving as input the constraints, automatically
computes the optimal sizes for the box.

Problem 4 concerns the computation of the simple moving average of infected cases
during an epidemic. The problem supposes that the number of daily infected cases varies
according to a particular function and, after introducing the concept of moving average,
asks students to compute it in particular situations. A request of generalization of the
resolution completes the task.

Problem 5 is focused on the propagation of seismic waves during an earthquake.
Given the position of some seismographs and the times in which they firstly registered
longitudinal and transversal waves, the problem asks to find the position of the hypocenter
and to represent the event graphically.

Problem 6 concerns the computation of the herd immunity thanks to vaccines. In
particular, it asks to study the difference of growth of infected cases in a group with and
without vaccinated people, and to compute how many people should be vaccinated to
obtain the herd immunity. The problem asks to apply the solution to several illnesses with
different rates of infection.
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Problem 7 shows data about the Italian gross domestic product and asks students to

verify which of four linear models provided better describes the trend, using the definition
of the least squares regression lines introduced in the problem. As a generalization, the
problem asks to create an interactive worksheet which returns the expected gross domestic
product on the base of the chosen model.

Appendix B

reported.

In Table A1, the whole rubric used to assess and self-assess students’ solutions is

Table Al. The rubric developed to assess problem solving competence in the DMT project.

Indicators

Level (Score)

Description

Comprehension
Analyze the problematic
situation, represent and
interpretate the data and then
turn them in mathematical
language

L1
(0-3)

L2
(4-8)

L3
(9-13)

L4
(14-18)

You don’t understand the tasks, or you do incorrectly or partially, so
that you fail to recognize key points and information, or you
recognize some of them, but you interpret them incorrectly. You
incorrectly link information, and you use mathematical codes
insufficiently and /or with big mistakes.

You analyze and you understand the tasks only partially, so that you
select just some key points and essential information or, if you
identify all of them, you make mistakes by interpreting some of them,
by linking topics and/or by using mathematical codes.

You properly analyze the problematic situation by identifying and
correctly interpreting the key points, the information and the links
between them by recognizing and skipping distractors. You properly
use the mathematical codes by employing plots and symbols, but
there are some inaccuracies and/or mistakes.

You analyze and interpret the key points, the essential information
and the links between them completely and in a relevant way. You
are able to skip distractors and use mathematical codes by employing
plots and symbols with mastery and accuracy. Even if there are some
inaccuracies, these don’t influence the complex comprehension of the
problematic situation.

Identification of solving strategy
Employ solving strategies by
modeling the problem and by

using the most suitable strategy

L1
(0-4)

L2
(5-10)

L3
(11-16)

L4
(17-21)

You don’t identify operating strategies, or you identify them
improperly. You aren’t able to identify relevant standard model.
There isn’t any creative effort to find the solving process. You don’t
establish the appropriate formal instruments.

You identify operating strategies that are not very effective and
sometimes you employ them not very consistently. You use known
models with some difficulties. You show little creativity in setting the
operating steps. You establish the appropriate formal instruments
with difficulties and by doing some mistakes.

You identify operating strategies, even if they aren’t the most
appropriate and efficient. You show your knowledge about standard
processes and models which you learned in class, but sometimes you
don’t employ them correctly. You use some original strategies. You
employ the appropriate formal instruments, even though with some
uncertainties.

You employ logical links clearly and with mastery. You efficiently
identify the correct operating strategies. You employ known models
in the best way, and you also propose some new ones. You show
creativity and authenticity in employing operating steps. You
carefully and accurately identify the appropriate formal instruments.
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Table Al. Cont.

Indicators

Level (Score)

Description

You don’t implement the chosen strategies, or you implement them
incorrectly. You don’t develop the solving process, or you employ it

L1 incompletely and/or incorrectly. You aren’t able to use procedures
(0-4) and/or theorems or you employ them incorrectly and/or with
several mistakes in calculating. The solution isn’t consistent with the
problem’s context.
Development of the You employ the chosen strategies partially and not always properly.
solving process L2 You develop the solving process incompletely. You aren’t always able
Solve the problematic situation (5-10) to use procedures and/or theorems or you employ them partially
consistently, completely and correctly and/or with several mistakes in calculating. The solution is
correctly by applying partially consistent with the problem’s context.
mathematical rules and by You employ the chosen strategy even though with some inaccuracy.
performing the necessary 13 You develop the solving process almost completely. You are able to
calculations (11-16) use procedures and/or theorems or rules and you employ them
correctly and properly. You make a few mistakes in calculating. The
solution is generally consistent with the problem’s context.
You correctly employ the chosen strategy by using models and/or
L4 charts and/or symbols. You develop the solving process analytically,
(17-21) completely, clearly and correctly. You empl(?y pro‘c.edures an.d / or
theorems or rules correctly and properly, with ability and originality.
The solution is consistent with the problem’s context.
L1 You don’t argue or you argue the solving strategy/process and the
(0-3) test phgse wrongly by using mathematical language that is improper
or very inaccurate.
) You argue the solving strategy/process or the test phase in a
Argumentation L2 fragmentary way and/or not always consistently. You use broadly
Explain and comment on the “4-7) suitable, but not always rigorous mathematical language.
chosen strategy, the key steps of You argue the solving process and the test phase correctly but
the building process and the L3 incompletely. You explain the answer, but not the solving strategies
consistency of the results (8-11) employed (or vice versa). You use a pertinent mathematical language,
although with some uncertainty.
L4 You argue both the employed strategies and the obtained results
(12-15) consistently, accurately, exhaustively and in depth. You show an
excellent command of the scientific language.
You use Maple as a plain white sheet on which you transpose
L1 calculus and arguments which are somewhere else employed. You
(0-5) don’t use Maple’s capabilities in order to plot, to perform
mathematical operations and to solve the problem.
You partially use Maple’s commands in order to perform some
L2 non-basic calculus by making decisions about commands and
Use of an ACE (Maple) (6-12) instruments which aren’t always the most pertinent. You only use
Use the ACE commands basic functions and show that you aren’t able to employ
appropriately and effectively advanced features.
which is the software Maple, in You appropriately use basic Maple’s commands and show that you
order to solve the problem 13 are able to employ advanced features, even with some indecision,
(13-19) several attempts or by making some mistakes, or in a non-effective
way in order to represent the data, the solutions and to solve
the problem.
You display mastery in the use of Maple, you make correct and
L4 efficient decisions about commands and instruments which you
(20-25) employ. You are able to employ them gracefully and with originality

by using Maple’s capabilities in order to solve the problem.
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